Thursday, 9 June 2016

Materi dan pembahasan contoh soal suku banyak - teorema sisa

Suku banyak dan teorema sisa

Hal yang paling utama pada suku banyak adalah pembagian suku banyak P(x) oleh suatu suku Q(x) yang ditulis sebagai:
P(x) = Q(x) . H(x) + S(x)
Dengan H(x) menyatakan hasil bagi dan S(x) menyatakan sisa pembagian.
Untuk menentukan sisa pembagian, menggunakan teorema berikut:
  1. Dibagi (x - c) maka sisanya F(c).
  2. Dibagi (ax - b) maka sisanya F(b/a).
Hasil bagi dan sisa pembagian dapat di cari dengan menggunakan cara Horner jika pembagi dapat difaktorkan dan menggunakan cara biasa jika pembagi tidak dapat difaktorkan .

Contoh soal suku banyak - teorema sisa dan pembahasannya.

Nomor 1
Untuk polinom P(x) = x3 + 3x2 + 2x + 1, maka nilai polinom untuk x = 1 adalah...
A. 2
B. 4
C. 5
D. 7
E. 9

Pembahasan
Ganti x = 1
P(1) = 13 + 3 . 12 + 2 . 1 + 1 = 7
Jawaban: D

Nomor 2
Sisa pembagian dari P(x) = x4 + 3x3 + 2x2 - x - 1 oleh (x - 1) = ...
A. 1
B. 2
C. 3
D. 4
E. 5

Pembahasan
Pembagi (x - 1) maka sisa P(1)
P(1) = 14 + 3 . 13 + 2 . 12 - 1 - 1 = 4
Jawaban: D

Nomor 3
Sisa (x3 - 5x2 + 6x - 2) : (2x - 1) = ...
A. 3/8
B. 5/8
C. 7/8
D. 11/8
E. 15/8

Pembahasan
Pembagi (2x - 1) maka x = 1/2 sehingga sisa P(1/2).
P(1/2) = (1/2)3 - 8 (1/2)2 + 6 . 1/2 - 2 = 1/8 - 1/2 + 3 - 2 = 3/8 + 1 = 11/8
Jawaban: D

Nomor 4
Sisa pembagian dari 2x3 - x2 - x + p oleh (x + 1) adalah - 3, maka harga p yang memenuhi adalah ...
A. - 5
B. - 4
C. - 3
D. - 2
E. 0

Pembahasan.
Pembagi (x + 1) maka x = -1 sehingga sisa P(-1) = - 3
2(-1)3 - (-1)2 - (-1) + p = -3
- 2 + 1 + 1 + p = - 3
p = - 3
Jawaban: C

Nomor 5
Sisa pembagian x4 - 2x3 + x2 - 3x + 4 dibagi oleh x2 + 3x + 2 adalah...
A. 25x + 30
B. 20x + 20
C. 10x + 15
D.- 15x - 5
E. -35x - 24

Pembahasan
Faktorkan x2 + 3x + 2 hasilnya (x + 1) (x + 2)
Gunakan cara Horner (tulis suku banyak tanpa x)
1   -2   1   -3     4   ------(x + 1) ---> x = - 1
     -1   3   -4     7   
_______________+
1   -3    4   -7    11 (S1) -----(x + 2) ---> x = - 2
    -2    10  -28
_______________+
1   -5   14  -35 (S2)
Maka sisanya = (s2) (P1) + S1 = - 35 (x + 1) + 11 = - 35x - 35 + 11
Sisa = - 35x - 24
Jawaban: E

Nomor 6
Suatu suku banyak bila dibagi oleh x - 2 bersisa 11, dan jika dibagi oleh x + 1 sisanya -4. Suku banyak tersebut bila dibagi x2 - x - 2 = 0 bersisa..
A. x + 5
B. 5x + 1
C. x - 5
D. 5x - 1
E. 5x + 21

Pembahasan
Faktorkan x2 - x - 2 = 0 hasilnya (x - 2) (x + 1) dengan sisa ax + b
Pembagi (x - 2) sisanya 11 maka 2a + b = 11 .......(i)
Pembagi (x + 1) sisa - 4 maka -a + b = - 4 ..........(ii)
Eliminasi (i) dan (ii)
2a + b = 11
- a + b = - 4
____________-
3a = 15
a = 5 dan b = 1
Maka sisa ax + b = 5x + 1
Jawaban B

Nomor 7
Hasil bagi dan sisa pembagian suku banyak 4x3 - 2x2 + x - 1 dibagi oleh 2x2 + x + 1 berturut-turut adalah...
A. 2x - 1 dan x -1
B. 2x - 1 dan x + 1
C. 2x - 1 dan 2x - 1
D. 2x - 2 dan -x - 1
E. 2x - 2 dan x + 1

Pembahasan
Karena pembagi tidak bisa difaktorkan, gunakan cara biasa:
4x3 - 2x2 + x - 1 : 2x2 + x + 1 --> 2x
4x3 + 2x2 + 2x
______________-
- 4x2 - x - 1 ---> - 2
- 4x2 - 2x - 2
____________-
x + 1 (Sisa)
Sedangkan hasil baginya = 2x - 2
Jawaban: E


Ditulis oleh: Admin Pembahasan Contoh soal Updated at : Thursday, June 09, 2016